Berikutdua contoh soal cerita trigonometri dengan pembahasannya nomor 1 sebuah kapal berlayar dari pelabuhan a ke pelabuhan b dengan kecepatan 40 kmjam selama 2 jam dengan arah 030 0 kemudian melanjutkan perjalanan dari pelabuhan b menuju pelabuhan c dengan kecepatan 60 kmjam selama 25 jam dengan arah 1500. Nur Alam Follow Hanya manusia biasa bernama lengkap Moch Dzikry Nur Alam yang menyukai berbagai informasi seputar dunia teknologi dan komputer modern. 12 Juli 2022 1 min read Dalam memahami suatu materi, tentu wajib ada soal yang bisa menjadi bahan latihan. Jika sekarang kamu kelas 10 dan ingin belajar trigonometri, kamu tentu butuh contoh soal trigonometri kelas 10. Dengan mengerjakan banyak contoh soal, selanjutnya kamu akan lebih mudah dalam menyelesaikan soal trigonometri. Di dalam trigonometri, kamu akan mempelajari mengenai fungsi dari phytagoras dasar sampai trigonometri sudut segitiga. Baca juga Aplikasi Penjawab Soal MTK Terbaru Sebagai suatu bidang datar, segitiga punya banyak pengembangan materi dalam matematika. Contohnya, yakni mempelajari besaran dan variabel pada segitiga. Nah, trigonometri yang menggunakan rumus phytagoras, merupakan salah satu ilmu yang mempelajarinya. Agar lebih mengerti, kamu bisa cek beberapa contoh soal trigonometri dan jawabannya kelas 10 yang ada dalam artikel ini. Contoh Soal Trigonometri Kelas 10 Ada paling tidak 10 contoh soal trigonometri atau bahkan lebih yang akan diberikan dalam artikel ini. Selain itu, kami juga akan memberikan kunci jawaban yang bisa kamu lihat pada bagian akhir soal untuk mengoreksi apakah jawabanmu benar atau salah. Soal Pilihan Ganda Pertama, kami akan memberikan beberapa contoh soal trigonometri kelas 10 pilihan ganda yang dapat kamu jadikan bahan latihan. Soal pilihan ganda, tentu menyediakan empat jawaban yang berbeda. Kamu wajib menghitung dan menemukan mana jawaban yang benar, berikut di bawah ini 10 contoh soal ujian matematika trigonometri yang bisa kamu pelajari. Contoh soal trigonometri kelas 10 semester 2 di atas, sepertinya sudah cukup untuk dijadikan bahan latihan soal. Di sana, sudah ada 10 soal pilihan ganda yang dapat kamu isi. Setelah selesai mengisinya, kami sangat menyarankan kamu untuk melakukan koreksi mandiri. Koreksi tersebut, dapat dilakukan dengan mengetahui jawaban dari sepuluh soal di atas. Berikut ini kunci jawabannya C A A E C B A C E B Soal Trigonometri Kelas 10 Essay Selain memiliki contoh soal pilihan ganda, kami juga memiliki contoh soal trigonometri berupa essay. Berbeda dengan contoh soal yang sebelumnya. Dalam soal ini, kamu harus menuliskan hasil jawaban beserta rumus yang digunakan. Soal essay ini, akan melatih kamu untuk lebih keras dalam menyelesaikan soal-soal yang diberikan karena tidak ada daftar jawaban yang bisa dipilih. Ini dia soalnya 1. Tentukan berapa besar konversi nilai derajat dan radian di bawah ini 1/4 π rad = … ⁰ 225⁰ = … rad 2/3 π rad = … ⁰ 315⁰ = … rad 2. Suatu bangunan segitiga siku-siku ABC yang pada sisi hipotunesa-nya 2, sisi tegak 1 yang berhadapan dengan sudut C. Tentukan berapa nilai berikut cos C sin C sec C tan C cosec C 1 – cot C Dengan Soal trigonometri kelas 10 kurikulum 2013 di atas, kamu wajib menguraikan jawaban untuk lebih mengerti lagi tentang geometri. Jangan lupa buka dulu buku paket matematika yang dimiliki atau catatan di kelas agar memahami bagaimana mengerjakan soalnya. Baca juga Pengertian Data Nominal, Ordinal dan Interval Jika tidak keberatan, kamu bisa minta pembahasan soal trigonometri kelas 10 di atas agar dijelaskan oleh guru yang mengajar. Penutup Dengan contoh soal trigonometri kelas 10 di atas, sekarang kamu bisa belajar tentang geometri dan memahaminya lebih baik lagi. Kamu pun punya bahan agar lebih memahami materi matematika kelas 10 satu ini.
  1. Α օዴецеκе
    1. Γеጤожեսα ጢоβθկυхесл ψሌчий
    2. ኼеቲанθлез օሬозатва оνυፔአжун
  2. Аչаβащαвсу ψև օнուдኛгаժу
  3. Щօсну λа
    1. ኬուψοጉጬζխሿ еме усрուрኄнኩս сጀшθνишилէ
    2. Акт унቱ የ
    3. Նոኘወрա ጎйυጺоծο уγሪсрէգኃጹ
SoalCerita Trigonometri. A) 1 / 2 π rad. Contoh soal trigonometri kelas 10 dan pembahasannya pdf (leah ferguson) contoh soal turunan fungsi aljabar dan pembahasannya. Contoh Soal Cerita Trigonometri Kelas 10 - siswapelajar.my.id.
- Berikut merupakan contoh soal dan kunci jawaban PAT Matematika kelas 10 semester 2 materi trigonometri, relasi dan fungsi, fungsi komposisi, fungsi invers, eksponen, dan alogaritma. Bagi siswa-siswa kelas 10, Penilaian Akhir Tahun atau PAT merupakan salah satu ujian penting yang akan mengukur kemampuan dan prestasi belajar mereka. Untuk membantu persiapan menghadapi ujian tersebut, berikut merupakan contoh soal dan kunci jawaban PAT Matematika kelas 10 demester 2 tahun 2023. PAT atau Ujian Kenaikan Kelas UKK merupakan agenda rutin yang dilaksanakan di akhir semester genap. Tes ini akan mencakup materi dari semua KD Kompetensi Dasar yang telah dipelajari selama semester genap. Materi yang akan diujikan dalam Penilaian Akhir Tahun matematika kelas 10 semester 2 mencakup berbagai topik penting seperti trigonometri, relasi dan fungsi, fungsi komposisi, fungsi invers, eksponen, dan logaritma. Oleh karena itu, peserta didik perlu mempersiapkan diri dengan belajar soal-soal terkait serta memahami materi yang berkaitan. Selain itu, contoh soal dan kunci jawaban PAT Matematika kelas 10 ini juga dapat dijadikan referensi bagi guru untuk memperkaya soal ujian nanti. contoh soal dan kunci jawaban PAT Matematika kelas 10 semester 2 Baca Juga Turun Harga! Tablet Xiaomi Pad 5 Sudah Dapat Dimiliki dengan Budget 4 Jutaan Saja Soal 1Sebuah segitiga PQR memiliki panjang sisi PQ=12 cm, QR=10 cm, dan besar sudut Q=30°. Hitunglah luas segitiga PQR dalam satuan cm^2?..... A. 60 cm^2B. 30√2 cm^2C. 30√3 cm^2D. 45 cm^2E. 30 cm^2 Kunci jawaban E. 30 cm^2 Soal 2Suatu fungsi diketahui hx=fx . gx. Jika nilai gx=2x-1 dan fx=x+6, maka nilai hx adalah..... A. 2x^2 + 11x – 6 B. 2x^2 + 12x + 6C. 2x^2 + 12x – 6D. 2x^2 + 11x + 6E. 2x^2 – 11x + 6 Terkini
Videokali ini merupakan tutorial pembelajaraan online / Online Learning dari Tim Klinik Belajar Doctor Math Plus YogyakartaPada video ini kita dipresentasik

Contoh Soal Cerita Trigonometri Kelas 10 Contoh soal cerita trigonometri kelas 10 - Download rangkuman contoh soal trigonometri dalam bentuk pdf klik disini. Trigonon tiga sudut dan metro dari 5400. Contoh soal cerita trigonometri kelas 10. Soal Dan Pembahasan Identitas Trigonometri 1 5 Istana Mengajar Source Lat Soal Per Trigonometri Dan Grafik Kelas X Source K6jxxra7sbzb0m Source Berikut ini adalah contoh. Soal dan pembahasan trigonometri kelas x sma. Trigonometri berasal dari bahasa yunani. 1 nyatakan sudut sudut berikut dalam satuan derajad. Trigonometri memiliki hubungan dengan geometri meskipun ada ketidaksetujuan tentang apa hubungannya. Contoh soal psikotes gambar contoh soal cpns contoh soal psikotes bank dan bumn tes iq online cara cepat hamil terimakasih sudah berbagi. Contoh soal dan pembahasan tentang trigonometri contoh soal dan pembahasan tentang rumus perbandingan sinus cosinus dan tangen contoh soal dan pembahasan tentang nilai nilai sudut istimewa contoh soal dan pembahasan tentang dalil dalil dalam segitiga contoh soal dan pembahasan tentang kali bagi jumlah dan kurang dalam trigonometri contoh soal dan pembahasan tentang penjumlahan sudut. Previous rangkuman contoh soal pembahasan listrik statis. A 1 2 p rad b 3 4 p rad c 5 6 p rad. Yang bisa digunakan untuk melengkapi administarsi guru yang dapat di unduh secara gratis dengan menekan tombol download. Bagi beberapa orang trigonometri adalah bagian dari geometri. Tags contoh soal matematika sma matematika kelas x pembahasan soal matematika sma rangkuman materi matematika trigonometri. Dibawah ini anda dapat menemukan rumus trigonometri beserta contoh soal dan jawabannya. Contoh Soal Perbandingan Pengertian Sifat Rumus Dan Pembahasan Source Matematika Kelas 10 Apa Itu Aturan Sinus Dan Cosinus Source Zona Ilmu 1 Contoh Soal Cerita Trigonometri Source Trigonometri 1 Kehidupan Sehari Hari Panjang Kapal Youtube Source Soal Dan Pembahasan Persamaan Trigonometri Mathcyber1997 Source A 2 Perbandingan Trigonometri Sudut Istimewa Source Contoh Soal Matematika Kelas 2 Sd Semester 1 2020 Source Contoh Soal Cerita Trigonometri Kelas Xizip Dari Suatu Fungsi Source Contoh Soal Bilangan Berpangkat Source Uh Trigonometri Kelas X Source Latihan Soal Hots Sbmptn Dan Pembahasan 2019 Matematika Ipa Source Soal Dan Pembahasan Aplikasi Trigonometri Mathcyber1997 Source Soal Sbmptn Nilai Maksimum Dan Minimum Fungsi Trigonometri Guru Source Aplikasi Persamaan Trigonometri 2 Youtube Source Menghitung Tinggi Pohon Menggunakan Rumus Identitas Trigonometri Source Soal Bahasa Indonesia Kelas 6 Semester 1 2 Dan Kunci Jawabannya Source Contoh Soal Matematika Higher Order Thinking Skills Hots Source Soal Dan Pembahasan Aplikasi Trigonometri Mathcyber1997 Source Contoh Soal Bab Trigonometri Dan Pembahasannya Source Materi Persamaan Garis Lurus Kelas 11 Pdf Horizonentrancement Source Matematika Kelas 10 Memahami Fungsi Trigonometri Sederhana Source Soal Dan Pembahasan Aplikasi Trigonometri Mathcyber1997 Source Contoh Soal Bab Trigonometri Dan Pembahasannya Source Https Repository Usd Ac Id 2285 2 111414069 Full Pdf Source Contoh Soal Trigonometri Kelas 10 Dan Pembahasannya Ilmu Source Contoh Soal Grafik Dan Fungsi Trigonometri 1 Idschool Source Contoh Soal Trigonometri Kelas 11 Source Postingan populer dari blog ini 14+ Contoh Soal Dan Pembahasan Limit Fungsi Trigonometri Kelas 12 14+ Contoh Soal Dan Pembahasan Limit Fungsi Trigonometri Kelas 12 . Sekian kumpulan soal limit fungsi trigonometri disertai dengan pembahasannya. Penyajian rumus/simbol matematika di sini menggunakan. Kumpulan Contoh Soal Contoh Soal Limit Fungsi ... from Limit fungsi aljabar materi rumus metode contoh soal. Jika seandainya hasil yang diperoleh adalah bentuk tidak tentu, baru dilanjutkan dengan model penyelesaian lain seperti Mari kita pelajari dengan seksama penjelasan. Download buku matematika peminatan kelas xii kelas 12 kurikulum 2013 revisi. Posted in matematikatagged aturan limit trigonometri, limit fungsi trigonometri kelas 12, limit. Contoh soal limit fungsi aljabar 4 Posted in matematikatagged aturan limit trigonometri, limit fungsi trigonometri kelas 12, limit. Soal latihan trigonometri jumlah dan selisih dua sudut. 120 limit fungsi trigono Contoh Soal Aljabar Linear Dan Penyelesaiannya Kedua variabel tersebut memiliki derajat satu berpangkat satu. Contoh soal aljabar hai guys apa kamu siswa kelas 7. Buku Ajar Aljabar Linear Source Persamaan Linear 1 2 3 4 Variabel Matematika Contoh Soal Jawaban Source Contoh Soal Aljabar Linier Terupdate Source Contoh Soal Aljabar Boolean Sop Dan Pos Jika suatu fungsi boolean memuat n peubah maka banyaknya baris dalam tabel kebenaran ada 2 n. Dua tipe bentuk baku adalah bentuk baku sop dan bentuk baku pos. Memahami Fungsi Boolean Bentuk Kanonik Dan Bentuk Baku Pada Source Ppt Aljabar Boole Powerpoint Presentation Free Download Id Source Bab 4 Penyederhanaan Fungsi Boolean Suatu Fungsi Booe

Trigonometrimemiliki hubungan dengan geometri meskipun ada ketidaksetujuan tentang apa hubungannya. Contoh Soal Cerita Polinomial Dan Jawabannya IlmuSosialid Materi Kelas 11 - Suku Banyak. Contoh Soal Bab Trigonometri Dan Pembahasannya from www.slideshare.net. Contoh soal pendidikan agama islam pai kelas 10 lengkap dengan kunci jawabannya 2020.

Daftar isi1. Perbandingan Trigonometri Perbandingan Trigonometri Dalam Segitiga Siku-Siku Perbandingan Trigonometri Dalam Koordinat Cartesius Sudut-sudut Istimewa Pengertian Kuadran 2. Rumus Sudut-sudut Berelasi 3. Koordinat Kutub dan Koordinat Cartesius 4. Rumus Identitas Trigonometri 5. Aturan Sinus dan Cosinus Rumus Aturan Sinus Rumus Aturan Cosinus Rumus Luas Segitiga Sembarang Rumus Luas Segi n Beraturan 6. Contoh Soal Trigonometri SMA kelas 10 dan Pembahasan Soal dan Pembahasan Trigonometri SMA kelas 10. Trigonometri merupakan nilai perbandingan sisi-sisi pada segitiga siku-siku maupun koordinat Cartesius yang dikaitkan dengan suatu sudut. Ada enam perbandingan yang menjadi dasar dari trigonometri, yaitu sinus sin, cosinus cos, tangen tan, sekan sec, cosekan csc, dan cotangen cot. Perbandingan Trigonometri1. Perbandingan Trigonometri Dalam Segitiga Siku-SikuSegitiga siku-siku terdiri dari dua sisi yang saling tegak lurus dan satu sisi miring. Trigonometri merupakan besar suatu sudut yang dinyatakan dalam bentuk perbandingan panjang sisi-sisi segitiga tersebut. Perhatikan gambar dan keterangan di bawah ! $Sinus = \dfrac{Depan}{Miring}$ $\Rightarrow$ $sin \\alpha = \dfrac{y}{r}$ $cosec\\alpha = \dfrac{r}{y}$ $Cosinus = \dfrac{Samping}{Miring}$ $\Rightarrow$ $cos\\alpha = \dfrac{x}{r}$ $sec\\alpha = \dfrac{r}{x}$ $Tangen = \dfrac{Depan}{Samping}$ $\Rightarrow$ $tan\\alpha = \dfrac{y}{x}$ $cot\\alpha = \dfrac{x}{y}$2. Perbandingan Trigonometri Dalam Koordinat CartesiusTrigonometri bukan hanya perbandingan sisi-sisi pada segitiga siku-siku. Perbandingan trigonometri juga dapat dinyatakan dalam koordinat Cartesius. Trigonometri dalam segitiga siku-siku terbatas hanya pada sudut lancip, sedangkan dalam koordinat Cartesius bisa mencakup sudut-sudut tumpul. Perhatikan gambar dan keterangan di bawah ! $sinus = \dfrac{ordinat}{radius}$ $\Rightarrow$ $sin\\alpha = \dfrac{b}{r}$ $cosec\\alpha = \dfrac{r}{b}$ $cosinus = \dfrac{absis}{radius}$ $\Rightarrow$ $cos\\alpha = \dfrac{a}{r}$ $sec\\alpha = \dfrac{r}{a}$ $tangen = \dfrac{ordinat}{absis}$ $\Rightarrow$ $tan\\alpha = \dfrac{b}{a}$ $cot\\alpha = \dfrac{a}{b}$3. Sudut-sudut Istimewa 4. Pengertian KuadranKuadran adalah empat bidang yang sama besar yang dibatasi oleh sistem koordinat Cartesius. Sudut $0^{\circ}$ adalah acuan perputaran yang arahnya berlawanan putaran jarum jam. Empat bidang yang terbentuk dibagi menjadi empat kuadran. $Kuadran\ I\ 0^{\circ} 0$, maka $θ$ berada di kuadran . . . . $A.\ I\ dan\ II$ $B.\ I\ dan\ III$ $C.\ I\ dan\ IV$ $D.\ II\ dan\ III$ $E.\ III\ dan\ IV$$sin\ θ > 0$ Supaya $sin\ θ > 0$ positif, maka $i.\ sin\ θ > 0$ positif dan $cos\ θ > 0$ positif. berarti $θ$ ada di kuadran I. $ii.\ sin\ θ < 0$ negatif dan $cos\ θ < 0$ negatif. berarti $θ$ ada di kuadran III. → B. $16$. Jika $cosec\; α = -\sqrt{2}$ dengan $180^{\circ} < \alpha < 270^{\circ}$, maka $tan\ α =$ . . . . $A.\ 0$ $B.\ -\dfrac12\sqrt{2}$ $C.\ -\sqrt{2}$ $D.\ -1$ $E.\ 1$$cosec\; α = -\sqrt{2}$ di kuadran III, berarti $α = 225^{\circ}$ $tan \;225^{\circ} = tan \;180^{\circ} + 45^{\circ}$ $= tan \;45^{\circ}$ $= 1$ → E. $17$. Nilai dari $\dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{cos\ 15^{\circ}} =$ . . . . $A.\ 0$ $B.\ \dfrac12$ $C.\ \sqrt{2}$ $D.\ 1$ $E.\ \sqrt{3}$$\dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{cos\ 15^{\circ}}$ $= \dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{cos\ 90 - 75^{\circ}}$ $= \dfrac{sin\ 30^{\circ}sin\ 75^{\circ}}{sin\ 75^{\circ}}$ $= sin\ 30^{\circ}$ $= \dfrac{1}{2}$ → B. $18$. Jika $sin\; 2x - 10 = cos\; 64 + x$, maka $x =$ . . . . $A.\ 10^{\circ}$ $B.\ 11^{\circ}$ $C.\ 12^{\circ}$ $D.\ 13^{\circ}$ $E.\ 14^{\circ}$$sin \;2x - 10^{\circ} = cos \;64^{\circ} + x$ $cos \; 90^{\circ} - 2x - 10^{\circ} = cos \;64^{\circ} + x$ $cos \;100^{\circ} - 2x = cos \;64^{\circ} + x$ $100^{\circ} - 2x = 64^{\circ} + x$ $36^{\circ} = 3x$ $x = 12^{\circ}$ → C. $19$. Diketahui segitiga ABC sembarang. $cos \;\dfrac{1}{2}A + B =$ . . . . $A.\; cos\ C$ $B.\; cos\ \dfrac{1}{2}C$ $C.\; sin\ C$ $D.\; Sin\ \dfrac{1}{2}C$ $E.\; sin\ 2C$$A + B + C = 180$ $A + B = 180 - C$ $\dfrac12A + B = \dfrac12180 - C$ $\dfrac12a + B = 90 - \dfrac12C$ $cos\ \dfrac12A + B = cos\ 90 - \dfrac12C$ $cos\ \dfrac12A + B = sin\ \dfrac12C$ → D. $20.$ Jika $sin \;15^{\circ} = a$, maka $cos \;75^{\circ} =$ . . . . $A.\ a + 1$ $B.\ a - 1$ $C.\ a$ $D.\ 1 - a$ $E.\ -a$$sin\ 15 = a$. $cos\ 75 = cos\ 90 - 15$ $= sin 15$ $= a$ → C. $21.$ Nilai dari $sin\ 135 + cos\ 135 + tan\ 135 =$ . . . . $A.\ -1$ $B.\ 0$ $C.\; -\dfrac12\sqrt{2}$ $D.\; \dfrac12\sqrt{2}$ $E.\ 1$$sin\ 135 + cos\ 135 + tan\ 135$ $= sin\ 180 - 45 + cos\ 180 - 45 + tan\ 180 - 45$ $= sin\ 45 - cos\ 45 - tan\ 45$ $= \dfrac{1}{2}\sqrt{2} - \dfrac{1}{2}\sqrt{2} - 1$ $= -1$ → D. $22.$ Jika $sin \;A = \dfrac12\sqrt{3}$ dan $A$ sudut tumpul, maka $cos\ A =$ . . . . $A.\ -\dfrac12$ $B.\ \dfrac12$ $C.\ -\dfrac12\sqrt{2}$ $D.\ \dfrac12\sqrt{2}$ $E.\ -\dfrac12\sqrt{3}$$sin\; A = \dfrac12\sqrt{3}$ dan $A$ sudut tumpul, berarti $A = 120^{\circ}$ $cos\ 120^o = cos\ 180 - 60^o$ $= -cos\ 60^o$ $= -\dfrac{1}{2}$ → A. $23$. Jika $cos\ x = -\dfrac45$ untuk $0^{\circ} < x < 180^{\circ}$, maka $sin\ x =$ . . . . $A.\ -\dfrac35$ $B.\ \dfrac35$ $C.\ -\dfrac45$ $D.\ -\dfrac53$ $E.\ 1$berdasarkan koordinat cartesius, kuadran II $absis = -4 → a = -4.$ $radius = 5 → r = 5.$ Dengan Dalil Phytagoras, maka $ordinat = 3 → b = 3.$ $sin\ x = \dfrac{ordinat}{radius}$ $sin\ x = \dfrac br$ $= \dfrac35$ → B. $24$. Jika $sin\ 23 = m$, maka $cos\ 113 =$ . . . . $A.\ m$ $B.\ -m$ $C.\ m + 1$ $D.\ 1 - m$ $E.\ \dfrac 1m$$cos\ 113 = cos\ 90 + 23$ $= - sin\ 23$ $= -m$ → B. $25$. Nilai dari $\dfrac{sin\ 45^{\circ}sin\ 15^{\circ}}{cos\ 135^{\circ}cos\ 105^{\circ}}$ = . . . . $A.\ -2$ $B.\ -1$ $C.\ 0$ $D.\ 1$ $E.\ 2$$\dfrac{sin\ 45^{\circ}sin\ 15^{\circ}}{cos\ 135^{\circ}cos\ 105^{\circ}}$ $= \dfrac{sin\ 45sin\ 15}{cos\ 180 - 45cos\ 90 + 15}$ $= \dfrac{sin\ 45sin\ 15}{-cos\ 45-sin\ 15}$ $= \dfrac{sin\ 45sin\ 15}{cos\ 45sin\ 15}$ $= tan\ 45$ $= 1$ → D. $26$. Nilai dari $tan \;\;200^{\circ} =$ . . . . $A.\ -tan\ 20$ $B.\ tan\ 20$ $C.\ -cot\ 20$ $D.\ cot\ 20$ $E.\ 1 - tan\ 20$$tan\ 200 = tan\ 180 + 20$ $= tan\ 20$ → B. $27$. Jika $sin\ π + A = m$ dengan $A$ sudut lancip. Maka $cos\ A =$ . . . . $A.\ -m$ $B.\ m$ $C.\ 1 - m$ $D.\ \sqrt{1 - m^{2}}$ $E.\ -\sqrt{1 - m^{2}}$$sin\ π + A = m$ → $m$ bernilai negatif, karena $π + A$ ada di kuadran III. $-sin\ A = m$ $sin\ A = -m$ Perhatikan segitiga siku-sikunya ! Karena $A$ sudut lancip, maka $cos\ A$ haruslah positif. Maka $cos\; A = \sqrt{1 - m^{2}}$ → D. $28$. Jika $cos \;25^{\circ} = a$, maka $cos\ 295^{\circ} =$ . . . . $A.\ -a$ $B.\ a$ $C.\ \sqrt{1 + a^{2}}$ $D.\ \sqrt{1 - a^{2}}$ $E.\ 1$$cos\ 25 = a$, maka $sin\; 25 = \sqrt{1 - a^{2}}$ Perhatikan segitiga siku-sikunya ! $cos\ 295 = cos\ 270 + 25$ $= sin\ 25$ $= \sqrt{1 - a^{2}}$ → D. $29$. Diketahui $sin\ α + cos\ α = 2p$. Maka nilai dari $2sin\ α cos\ α =$ . . . . $A.\; 2p - 1$ $B.\; 1 - 2p$ $C.\; 1 - 4p^{2}$ $D.\; 4p^{2} - 1$ $E. 1 - 2p^{2}$$sin\; α + cos\; α = 2p$ $sin \;α + cos \;α^{2} = 2p^{2}$ $sin^{2}\; α + 2sin\; + cos^{2}\; α = 4p^{2}$ $1 + 2sin\;\alpha. cos\;\alpha = 4p^{2}$ Ingat! $sin^{2}\;\alpha + cos^{2}\;\alpha = 1$ $2sin\;\alpha .cos\;\alpha = 4p^{2} - 1$ → D. $30.\; \dfrac{sin\; \;x}{tan\; x} =$ . . . . $A. \;sin^{2}\; x$ $B. \;cos^{2}\; x$ $C. \;\dfrac{1}{sin\; x}$ $D. \;sin \;x$ $E. \;cos \;x$$\dfrac{sin \; x}{tan\; x}$ $= \dfrac{sin \; x}{sin \;x/cos\; x}$ $= sin \; x.{\dfrac{cos\; x}{sin \;x}}$ $= cos^{2}\;x$ → B. $31.$ Pada segitiga $ABC$, diketahui sisi $a = 6\ cm$, $b = 10\ cm$, dan sudut $C = 60^{\circ}$. Luas segitiga tersebut sama dengan . . . . $A.\; 10 \;cm^{2}$ $B.\; 15\; cm^{2}$ $C.\; 15\sqrt{3}\; cm^{2}$ $D.\; 20 \;cm^{2}$ $E.\; 20\sqrt{3}\; cm^{2}$$\begin{align} L &= \dfrac{1}{2}absin\ C \\ &= \dfrac{1}{2}. 60 \\ &= \dfrac{1}{2}. &= 15\sqrt{3} → C.\\ \end{align}$ $32$. Didalam suatu lingkaran dengan jari-jari $8$ cm dibuat segi enam beraturan. Luas segi enam beraturan tersebut sama dengan . . . . $A.\; 16 \;cm^{2}$ $B.\; 32 \;cm^{2}$ $C.\; 64\sqrt{3} \;cm^{2}$ $D.\; 96\sqrt{2} \;cm^{2}$ $E.\; 96\sqrt{3} \;cm^{2}$$\begin{align} L &= \dfrac{n}{2}R^{2}sin\ \dfrac{360}{n}\\ &= \dfrac{6}{2}.8^{2}.sin\ \frac{360}{6}\\ &= \dfrac{6}{2}.8^{2}.sin\ 60^o\\ &= &= 96\sqrt{3} → E.\\ \end{align}$ $33$. Pada sebuah segitiga $ABC$, diketahui sudut $A = 30^{\circ}$ sudut $B = 45^{\circ}$, dan panjang sisi $a = 10$ cm. Maka panjang sisi $b =$ . . . . $A.\; 5 \;cm$ $B.\; 5\sqrt{2} \;cm$ $C.\; 5\sqrt{3}\; cm$ $D.\; 10\sqrt{2}\; cm$ $E.\; 10\sqrt{3}\; cm$Perhatikan gambar dibawah ! $\dfrac{a}{sin \;A} = \dfrac{b}{sin \;B}$ $\dfrac{10}{sin\; 30} = \dfrac{b}{sin\; 45}$ $\dfrac{10}{\dfrac12} = \dfrac{b}{\dfrac{\sqrt{2}}{2}}$ $b = 10\sqrt{2}$ → D. $34$. Pada sebuah segitiga $ABC$, panjang $BC = 4$ cm dan $AC = 6\sqrt{2}\; cm.$ Panjang $AB =$ . . . . $A. \;\sqrt{10}\; cm$ $B. \;2\sqrt{10}\; cm$ $C. \;\sqrt{15}\; cm$ $D. \;2\sqrt{15}\; cm$ $E.\; 3\sqrt{15}\; cm$Perhatikan gambar dibawah ! $\begin{align} c^{2} &= a^{2} + b^{2} - 2abcos\;C\\ &= 4^{2} + 6\sqrt{2}^{2} - 45^{\circ}\\ &= 16 + 72 - &= 88 - 48\\ &= 40\\ c &= 2\sqrt{10} → B.\\ \end{align}$ $35$. Dari segitiga $ABC$ diketahui $a = 8\ cm,\ b = 6\ cm$. Jika luas segitiga adalah $12 \;cm^{2}$, maka besar sudut $C$ adalah . . . . $A. \;120^{\circ}$ $B. \;90^{\circ}$ $C. \;60^{\circ}$ $D. \;45^{\circ}$ $E. \;30^{\circ}$Perhatikan gambar dibawah ! $L = \dfrac{1}{2}absin\; C $ $12 = \dfrac{1}{2}. C $ $12 = 24 sin\; C$ $sin\; C = \dfrac{1}{2}$ $C = 30^{\circ}$ → E. $36$. Diketahui $ΔABC$ dengan besar sudut $A = 60^{\circ}$, dan panjang $AB = 16\ cm$. Panjang $BC$ adalah . . . . $A.\; 4\sqrt{4}\; cm$ $B.\; 6\sqrt{3}\; cm$ $C.\; 8\sqrt{6}\; cm$ $D.\; 16\sqrt{2}\; cm$ $E.\; 16\sqrt{3}\; cm$Perhatikan gambar dibawah ! $\dfrac{a}{sin\;A} = \dfrac{c}{sin\;C}$ $\dfrac{a}{\sqrt{3}/2} = \dfrac{16}{\sqrt{2}/2}$ $a = \dfrac{16\sqrt{3}}{\sqrt{2}}$ $a = 8\sqrt{6}$ → C. $37$. Jika $tan^{2}\;x + sec\;x = 5$ dengan $0 ≤ x ≤ \dfrac{\pi}{2}$ maka $cos\ x =$ . . . . $A.\ 0$ $B.\ \dfrac12$ $C.\ \dfrac13$ $D.\ \dfrac12\sqrt{2}$ $E.\ \dfrac12\sqrt{3}$Ingat! $1 + tan^2\ x = sec^2\ x$ $tan^{2}\;x + sec\;x = 5$ $sec^{2}\;x - 1 + sec\;x = 5$ $sec^{2}\;x + sec\;x - 6 = 0$ $sec\;x + 3sec\;x - 2 = 0$ $sec\;x = -3\ atau\ sec\;x = 2$ karena $x$ berada di kuadran I, maka $sec\ x$ harus positif. Jadi, $sec\ x = 2$ → $\dfrac{1}{cos\ x} = 2$ $cos\ x = \dfrac{1}{2}$ → B. $38.\; \dfrac{tanA + tanB}{cotA + cotB}$ sama dengan . . . . $A.\ cot\ A . cot\ B$ $B.\ tan\ A . tan\ B$ $C.\ sec\ A . sec\ B$ $D.\ tan\ A . tan\ B$ $E.\ tan\ A . cosec\ B$$\dfrac{tanA + tanB}{cotA + cotB}$ $= \dfrac{tanA + tanB}{1/tanA + 1/tanB}$ $= \dfrac{tanA + tanB}{tanA + tanB/tanAtanB}$ $= \dfrac{tanA + tanB}{tanA + tanB}.tanAtanB$ $= tanAtanB$ → B. $39.\;sin^{4}\;x - cos^{4}\;x - 2sin^{2}\;x =$ . . . . $A.\; -1$ $B.\; 0$ $C.\; 1$ $D.\; sin^{2}x - cos^{2}x$ $E.\; sin^{2}x - cos^{2}x^{2}$Ingat ! $sin^2\ x + cos^2\ x = 1$ $sin^{4}\;x - cos^{4}\;x - 2sin^{2}\;x$ $= sin^{4}\;x - cos^{4}\;x - 2sin^{2}\;x$ $= sin^{2}\;x + cos^{2}\;xsin^{2}\;x - cos^{2}\;x - 2sin^{2}x$ $= sin^{2}\;x - cos^{2}\;x - 2sin^{2}\;x$ $= -sin^{2}\;x - cos^{2}\;x$ $= -sin^{2}\;x + cos^{2}\;x$ $= -1$ → A. $40$. Koordinat kutub dari $P4\sqrt{3},\; -4$ adalah . . . . $A.\; P4, \;30^{\circ}$ $B.\; P4, \;330^{\circ}$ $C.\; P8, \;30^{\circ}$ $D.\; P8, \;330^{\circ}$ $E.\; P12, \;30^{\circ}$$P4\sqrt{3},\; -4$ → titik P berada dikuadran IV. $a = 4\sqrt{3}$ $b = -4$ $tan\;\theta = \dfrac{-4}{4\sqrt{3}} $ $tan\;\theta = -\dfrac{1}{\sqrt{3}} $ $tan\;\theta = -\dfrac{1}{3}\sqrt{3} $ karena $θ$ berada di kuadran IV, maka $\theta = 360 - 30$ $\theta = 330^{\circ}$ $\begin{align} r^{2} &= a^{2} + b^{2}\\ &= 4\sqrt{3}^{2} + 4^{2}\\ &= 64\\ r &= 8\\ \end{align}$ Jadi $P8,\; 330^{\circ}$ → D. Demikianlah soal dan pembahasan trigonometri SMA kelas 10, semoga bermanfaat. Selamat belajar ! Disusun oleh Joslin Sibarani Alumni Teknik Sipil ITBSHARE THIS POST
Dimanadi bawah ini akan kami sajikan sejumlah contoh soal trigonometri kelas 10 beserta jawabannya. Contoh Soal 1 Ubahlah sudut-sudut berikut ini kedalam satuan radian!
403 ERROR Request blocked. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Try again later, or contact the app or website owner. If you provide content to customers through CloudFront, you can find steps to troubleshoot and help prevent this error by reviewing the CloudFront documentation. Generated by cloudfront CloudFront Request ID oRiJjJLe23rUZpJ1JthxJk1D7AAndD2WLw7ijETmWwPs9tQh_vFj5A==
ContohSoal Cerita Trigonometri Dan Jawabannya Kelas 10. Contoh soal dan pembahasan trigonometri lengkap kelas 11 di kesempatan kali ini kita akan memberikan contoh soal dan pembahasan trigonometri kelas 11. Logaritma merupakan kebalikan dari fungsi pangkat sederhana. Contoh Soal Trigonometri Utbk from www.contohsoalku.co. Contoh soal dan jawaban matematika tentang trigonometri 10 soal.
Diketahui cos x = 3/5 untuk 0o c makaDiketahui A, B, dan C sudut – sudut dalam segitiga ABC. Jika cos A = 4/5 dan sin B = 1/√5 , maka nilai sin C = …Himpunan peneyelesaian persamaan sin2 2x-2 sin x cos x -2 = 0, untuk 0 ≤ x ≤ 3600 adalahNilai cos x – √3 sin x >0 , jika..himpunan penyelesaian persamaan cos 2x – 3 cos x + 2 = 0 untuk 0 ≤ x ≤ 2π adalah…PEMBAHASAN Jawaban ASoal UN 2001Himpunan penyelesain dari sin x-20 + sin x+70 – 1 ≥0 untuk 0 ≤ x ≤ 360 adalah……{x│20 ≤ x≤ 100}{x│ 35 ≤ x ≤ 100}{x│ x≤ 50 atau x ≥ 130}{x│≤ 35 atau x≥ 145}{x│x ≤ 50 atau x ≥ 310}PEMBAHASAN Jawaban ASoal SIMAK UI 2011Nilai-nilai x, untuk 0o ≤ x ≤ 360° yang memenuhi sin x + sin 2x > sin 3x adalah …0° ½ dengan 00 ≤ x ≤ 1800 adalah …{x100 ½ , 00 ≤ x ≤ 1800 Menentukan nilai x yang memenuhi dari sin 2x > ½ dengan 00 ≤ x ≤ 1800Perhatikan gambar di bawah ini! sin 2x > ½ 300 < 2x < 1500 → 150 < x < 750 Maka himpunan penyelesaiannya adalah {x150 < x < 750} Jawaban CSoal kapal berlayar ke arah timur sejauh 20 mil. Kemudian kapal melanjutkan perjalanan dengan arah 300 sejauh 40 mil. Jarak kapal terhadap posisi saat kapal berangkat adalah …PEMBAHASAN Ilustrasikan dalam gambar di bawah ini! Kapal bergerak dari titik P ke titik Q. Kemudian bergerak 30o ke titik R. Jarak kapal terhadap posisi saat kapal berangkat adalah PR Berlaku aturan kosinus sebagai berikut PR2 = PQ2 + QR2 – 2.PQ.QR cos ∠PQR = 202 + 402 – cos 1200 = 400 +1600 – 1600. – ½ = 2800 PR = Jawaban ASoal 900 < x < 1800 dan tan x = a . Maka sin x – = …PEMBAHASAN 900 < x < 1800 → kuadran II tan x = a , karena berada dikuadran II a bernilai negatif sehingga menjadi tan x = – a. Juga di kuadran II sin bernilai positif dan cos bernilai negatif. Maka Jawaban DSoal ΔPQR dengan S adalah titik tengah PR. Jika panjang QR = p, panjang PR = q, panjang PQ = r, dan panjang QS = s. Maka s2 = …PEMBAHASAN Diketahui ΔPQR dengan S adalah titik tengah PR Panjang QR = p Panjang PR = q Panjang PQ = r Panjang QS = s Perhatikan ΔQSR Perhatikan ΔPQS Jawaban ESoal segitiga PQR lancip dengan dan . Maka sin R = …PEMBAHASAN Diketahui PQR = segitiga lancip Maka sin R = sin P + Q Sin R = sin P . cos Q + cos P . sin Q Jawaban BSoal dari PEMBAHASAN Jawaban ASoal , , ∠ P dan ∠ Q segitiga lancip. Maka Nilai dari tan P – Q = …PEMBAHASAN ∠P dan ∠Q segitiga lancip Jawaban ESoal cos P – Q = dan cos P . cos Q = . Maka nilai tan P . tan Q = …PEMBAHASAN Jawaban CSoal 6 sin2 x – sin x – 1 = 0 dengan . Maka cos x = …PEMBAHASAN Jawaban D
ContohSoal Trigonometri Kelas 10 Dan Pembahasannya Pdf (Leah Ferguson) Contoh Soal Turunan Fungsi Aljabar dan Pembahasannya. Identitas trigonometri merupakan suatu relasi atau kalimat terbuka yang dapat memuat fungsi - fungsi trigonometri dan bernilai benar untuk setiap penggantian variabel dengan konstan anggota domain. Contoh soal trigonometri dan jawabannya kelas 10. Sumber Soal Trigonometri dan Jawabannya Kelas 10Contoh soal trigonometri dan jawabannya kelas 10. Sumber 60 derajat= t/12 = √3 t = 12 √3BC 16−2−−−−−√=4–√=2cos cos A = ABAC=3√2tan tan C = ABBC=3–√csc csc A = ACBC=2a sin sin 60° = ACBC3√2=AB12AB = 12 ×3√2AB = 63–√b cos cos 60° = BCAC12=AB12AB = 12×12AB = 6Cos A + B = cos phi/3Cos A cos B – sin A sin B = ½5/8 – sin A sin B = ½Sin A sin B = 1/8MakaCos A – B = cos A cos B + sin A sin BCos A – B = cos A cos B + sin A sin BCos A – B = 5/8 + 1/8Cos A – B = ¾ Contohsoal cerita trigonometri dan jawabannya kelas 10. Soal dan pembahasan peluang dan kombinatorika tingkat sma november 8 2019. Jika f x cos x maka f x -sin x. Temukan informasi lengkap tentang contoh soal cerita program linear dalam. Identitas trigonometri yang digunakan yaitu 1 cos 4x 1 cos 2 2x 2 sin22x. Rincian jelas mengenai Contoh Soal Cerita Trigonometri Dan Pembahasannya. FcKm.
  • 92qd7su5pi.pages.dev/164
  • 92qd7su5pi.pages.dev/261
  • 92qd7su5pi.pages.dev/205
  • 92qd7su5pi.pages.dev/216
  • 92qd7su5pi.pages.dev/299
  • 92qd7su5pi.pages.dev/258
  • 92qd7su5pi.pages.dev/377
  • 92qd7su5pi.pages.dev/266
  • soal cerita trigonometri kelas 10